a2 United States Patent

Khatri et al.

US009110716B2

(10) Patent No.: US 9,110,716 B2
(45) Date of Patent: Aug. 18, 2015

(54)

(735)

(73)

")

@

(22)

(65)

(1)

(52)

INFORMATION HANDLING SYSTEM
POWER MANAGEMENT DEVICE AND
METHODS THEREOF

Inventors: Mukund P. Khatri, Austin, TX (US);
Vijay Nijhawan, Austin, TX (US); Dirie
N. Herzi, Round Rock, TX (US);
Madhusudhan Rangarajan, Round

Rock, TX (US)

Assignee: Dell Products, LP, Round Rock, TX
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1691 days.

Appl. No.: 12/136,518
Filed: Jun. 10, 2008

Prior Publication Data

US 2009/0307698 A1l Dec. 10, 2009

Int. Cl1.

GO6F 9/30 (2006.01)

GO6F 9/48 (2006.01)

GO6F 1/32 (2006.01)

U.S. CL

CPC GOG6F 9/4893 (2013.01); GO6F 1/3203

(2013.01); GOGF 1/329 (2013.01); GO6F
2209/483 (2013.01); Y02B 60/1217 (2013.01);
Y02B 60/144 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,901,522 B2 5/2005 Buch

6,966,007 B2 11/2005 Kuo et al.

6,968,469 B1* 11/2005 Fleischmann et al. 713/324
7,092,985 B2 8/2006 Hubbard

7,299,370 B2 11/2007 George et al.

7,793,074 B1* 9/2010 Wentzlaffetal. 712/10
7,797,512 B1* 9/2010 Chengetal. 712/10
2003/0065752 Al* 4/2003 Kaushiketal. 709/220

* cited by examiner

Primary Examiner — William B Partridge
(74) Attorney, Agent, or Firm — Larson Newman, LL.P

(57) ABSTRACT

An information handling system includes a set of power and
performance profiles. Based on which of the profiles has been
selected, the information handling system selects a thread
scheduling table for provision to an operating system. The
thread scheduling table determines the sequence of processor
cores at which program threads are scheduled for execution.
In a power-savings mode, the corresponding thread schedul-
ing table provides for threads to be concentrated at subset of
available processor cores, increasing the frequency with
which the information handling system can place unused
processors in a reduced power state.

16 Claims, 3 Drawing Sheets

< 502

RECEIVE REQUEST FOR THREAD
SCHEDULING INFORMATION

YES

< 506

¥

COMMUNICATE SEQUENTIAL THREAD
SCHEDULING INFORMATION

POWER
SAVINGS MODE

504
NO

g508

Y

COMMUNICATE INTERLEAVED THREAD
SCHEDULING INFORMATION

§510

SCHEDULE THREADS BASED ON
THREAD SCHEDULING INFORMATION

U.S. Patent

Aug. 18, 2015 Sheet 1 of 3 US 9,110,716 B2
K/rIOO
§150
BIOS MEMORY
§152 §l54 g155
THREAD SCHEDULING THREAD SCHEDULING POWER PROFILE
TABLE TABLE INDICATOR
F 3
§162 i) §102 §104 §164
MEMORY cPU 1 cey 2 MEMORY
glll ~ gllU §112 B % gIZU §122 L
0s CORE CORE CORE CORE
A A
§166 v §106 ¥ §108 §168
MEMORY CPU 3 £hU 4 MEMORY
B §130 §132 B §140 §l42 e
CORE CORE CORE CORE
§252 §254
CPU CORE CPU CORE
1 110 1 110
2 120 1 112
3 130 2 120
4 140 2 122
1 112 3 130
2 122 3 132
3 132 4 140
4 142 4 142

U.S. Patent Aug. 18, 2015 Sheet 2 of 3 US 9,110,716 B2

g//IOU
glUZ §104
CPU 1 CPU 2
gllo §112 §120 ng?
§315 p , §317
Ti T2
CORE CORE CORE CORE
) A
v §106 ¥ §108
CPU 3 CPU 4
(130 §132 §140 §l42
g319 < > §321
T3 T4
CORE CORE CORE CORE
FIG. 3 p
g102 g104
CPU 1 CPU 2
gllo gll? ngO ngE
11 T2 13 T4
CORE CORE CORE CORE
7y /s
|l vy gl
CPU 3 CPU
§l30 §132 §140 §142
CORE CORE CORE CORE

FlG. 4

U.S. Patent Aug. 18, 2015 Sheet 3 of 3 US 9,110,716 B2

§502

RECEIVE REQUEST FOR THREAD
SCHEDULING INFORMATION

504

POWER

SAVINGS MODE N

YES

§506 §508

Y Y

COMMUNICATE SEQUENTIAL THREAD COMMUNICATE INTERLEAVED THREAD
SCHEDULING INFORMATION SCHEDULING INFORMATION

§510

SCHEDULE THREADS BASED ON <
THREAD SCHEDULING INFORMATION |

Y

F1G. 5

US 9,110,716 B2

1

INFORMATION HANDLING SYSTEM
POWER MANAGEMENT DEVICE AND
METHODS THEREOF

FIELD OF THE DISCLOSURE

The present disclosure relates to information handling sys-
tems and more particularly to power management for infor-
mation handling systems.

BACKGROUND

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option is an information handling
system. An information handling system generally processes,
compiles, stores, and/or communicates information or data
for business, personal, or other purposes. Because technology
and information handling needs and requirements can vary
between different applications, information handling systems
can also vary regarding what information is handled, how the
information is handled, how much information is processed,
stored, or communicated, and how quickly and efficiently the
information can be processed, stored, or communicated. The
variations in information handling systems allow for infor-
mation handling systems to be general or configured for a
specific user or specific use such as financial transaction
processing, airline reservations, enterprise data storage, or
global communications. In addition, information handling
systems can include a variety of hardware and software com-
ponents that can be configured to process, store, and commu-
nicate information and can include one or more computer
systems, data storage systems, and networking systems.

Power management has become increasingly important for
information handling systems. In portable information han-
dling systems, such as mobile communication devices or
portable computers, power management can extend battery
life and improve a user’s experience with the system. In larger
information handling systems, such as servers, power man-
agement can save costs. Accordingly, an improved power
management device and methods would be useful.

BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its
numerous features and advantages made apparent to those
skilled in the art by referencing the accompanying drawings.

FIG. 1 is a block diagram of an information handling
system in accordance with one embodiment of the present
disclosure.

FIG. 2 is a diagram illustrating a particular embodiment of
thread scheduling tables of the information handling system
of FIG. 1.

FIG. 3 is a block diagram illustrating a particular embodi-
ment of thread scheduling at the information handling system
of FIG. 1.

FIG. 4 is a block diagram illustrating an alternative
embodiment of thread scheduling at the information handling
system of FIG. 1.

FIG. 5 is a flow diagram of a method of scheduling execu-
tion of threads at an information handling system in accor-
dance with one embodiment of the present disclosure.

The use of the same reference symbols in different draw-
ings indicates similar or identical items.

DETAILED DESCRIPTION

The following description in combination with the figures
is provided to assist in understanding the teachings disclosed

10

15

20

25

30

35

40

45

50

55

60

65

2

herein. The following discussion will focuses on specific
implementations and embodiments. This focus is provided to
assist in describing the teachings and should not be inter-
preted as a limitation on the scope or applicability of the
teachings. However, other teachings can certainly be used in
this application. The teachings can also be used in other
applications and with several different types of architectures
such as distributed computing architectures, client/server
architectures, or middleware server architectures and associ-
ated components.

For purposes of this disclosure, an information handling
system can include any instrumentality or aggregate of instru-
mentalities operable to compute, classify, process, transmit,
receive, retrieve, originate, switch, store, display, manifest,
detect, record, reproduce, handle, or use any form of infor-
mation, intelligence, or data for business, scientific, control,
entertainment, or other purposes. For example, an informa-
tion handling system can be a personal computer, a personal
digital assistant (PDA), a consumer electronic device, a net-
work server or storage device, a switch router, wireless router,
or other network communication device, or any other suitable
device and can vary in size, shape, performance, functional-
ity, and price. The information handling system can include
memory (volatile (e.g. random-access memory, etc.), non-
volatile (read-only memory, flash memory etc.) or any com-
bination thereof), one or more processing resources, such as a
central processing unit (CPU), a graphics processing unit
(GPU), hardware or software control logic, or any combina-
tion thereof. Additional components of the information han-
dling system can include one or more storage devices, one or
more communications ports for communicating with external
devices, as well as, various input and output (/O) devices,
such as a keyboard, a mouse, a video/graphic display, or any
combination thereof. The information handling system can
also include one or more buses operable to transmit commu-
nications between the various hardware components. Por-
tions of an information handling system may themselves be
considered information handling systems.

Portions of an information handling system, when referred
to as a “device,” a “module,” or the like, can be configured as
hardware, software (which can include firmware), or any
combination thereof. For example, a portion of an informa-
tion handling system device may be hardware such as, for
example, an integrated circuit (such as an Application Spe-
cific Integrated Circuit (ASIC), a Field Programmable Gate
Array (FPGA), a structured ASIC, or a device embedded on a
larger chip), a card (such as a Peripheral Component Interface
(PCI) card, a PCl-express card, a Personal Computer
Memory Card International Association (PCMCIA) card, or
other such expansion card), or a system (such as a mother-
board, a system-on-a-chip (SoC), or a stand-alone device).
Similarly, the device could be software, including firmware
embedded at a device, such as a Pentium™ class or Pow-
erPC™ brand processor, or other such device, or software
capable of operating a relevant environment of the informa-
tion handling system. The device could also be a combination
of any of the foregoing examples of hardware or software.
Note that an information handling system can include an
integrated circuit or a board-level product having portions
thereof that can also be any combination of hardware and
software.

FIG. 1 illustrates a block diagram of a particular embodi-
ment of an information handling system 100 having central
processing units (CPUs) 102, 104, 106, and 108 (CPUs 102-
108). The information handling system also includes memo-
ries 162, 164, 166, and 168, as well as Basic Input/Output
System (BIOS) memory 150.

US 9,110,716 B2

3

Each of the CPUs 102-108 includes multiple processor
cores. As illustrated, CPU 102 includes cores 110 and 112,
CPU 104 includes cores 120 and 122, CPU 106 includes cores
130 and 132, and CPU 108 includes cores 140 and 142. In
addition, each of the CPUs 102-108 is connected to an asso-
ciated memory. In the illustrated embodiment of FIG. 1, CPU
102 is connected to memory 162, CPU 104 is connected to
memory 164, CPU 106 is connected to memory 166, and CPU
108 is connected to memory 168. Further, each of the CPUs
102-108 is connected to the other CPUs via a communication
link. Additionally, in the illustrated embodiment of FIG. 1,
the CPU 102 is connected to the BIOS memory 150.

Each of the CPUs 102-108 is a multi-core data processor
configured to execute instructions embodied in a computer
program stored at a computer readable medium. In particular,
each core at the CPUs 102-108 is configured to execute pro-
gram instructions. For example, in the illustrated embodi-
ment of FIG. 1, the memory 162 stores an operating system
111 having a set of instructions to manipulate a data proces-
sor. The cores of the CPUs 102-108 can be configured to
execute the set of instructions embodied in the operating
system 111. It will be appreciated that although for purposes
of illustration each of the CPUs 102-108 are illustrated as
having two cores, in other embodiments each of the CPUs
102-108 can have up to N cores, where N is an integer. In
addition, it will be appreciated that although the CPUs 102-
108 are illustrated as separate physical CPUs, in an embodi-
ment one or more of the CPUs 102-108 can be a logical CPU,
such as a hyperthreaded logical CPU.

In addition, each of the CPUs 102-108 is configured to
execute multiple program threads. A program thread repre-
sents a particular task or function for a computer program.
Thus, a single program can be associated with a single thread
(where the single thread represents all the tasks and functions
for the program) or with multiple threads (where the program
executes different tasks and functions via different threads).
In the illustrated embodiment of FIG. 1, each core of the
CPUs 102-108 can be assigned to execute a specified program
thread. Assignment of a thread to a particular core is referred
to herein as “scheduling” the thread. By scheduling multiple
threads for simultaneous execution at the CPU cores, the
efficiency of the information handling system 100 is
increased.

Further, each of the CPUs 102-108 is configured to operate
in multiple power modes. In one power mode, referred to
herein as a normal or active mode, the cores of a CPU are
configured to execute program instructions normally. In
another power mode, referred to herein as a low-power mode,
power supplied to the CPU is reduced relative to the normal
mode, whereby the CPU cores can no longer execute program
instructions normally. In some low-power modes, the CPU
cores can execute a subset of program instructions, or can
execute program instructions at a reduced rate of speed. In
other low-power modes, the CPU cores do not execute
instructions, but can retain state information in order to
resume operations when the CPU is returned to the normal
mode. In a particular embodiment, each of the CPUs 102-108
can be configured to operate in multiple low-power modes. A
power management module (not shown) can determine the
activity of each of the CPUs 102-108 and set the power mode
for each CPU accordingly. For example, if the power man-
agement module determines that the cores of a CPU does not
have any threads scheduled for execution, the power manage-
ment module can place the CPU in a low-power mode to
conserve power. In an embodiment, the functions of the
power management module can be performed by the operat-
ing system 111.

10

15

20

25

30

35

40

45

50

55

60

65

4

In addition, each of the CPUs 102-108 can be configured to
operate in different memory access modes. In one mode,
referred to herein as interleaved memory mode, each of the
CPUs 102-108 can access any of the memories 162-168 in
order to execute program instructions. In another mode,
referred to herein as Non-Uniform Memory Access (NUMA)
mode, threads executing at one CPUs 102-108 can, among the
memories 162-168, access the local memory for the CPU
more quickly or efficiently than memories associated with
other CPUs. Thus, in NUMA mode, threads executing at the
CPU 102 can access the memory 162 more efficiently than
they can access the memories 164, 166, and 168.

In the illustrated embodiment of FIG. 1, the CPU 102 is a
bootstrap processor, and is configured to receive BIOS infor-
mation from the BIOS memory 150. In particular, in response
to a power-on reset (POR) event, the CPU 102 requests con-
figuration information, such as BIOS information, from the
BIOS memory 150. In response to receiving the BIOS infor-
mation, the CPU 102 can configure one or more aspects of the
information handling system 100. For example, the CPU 102
can configure input and output devices, initiate execution of
the operating system 111, and the like.

Each of the memories 162-168 can be computer readable
media such as volatile memory (e.g. random access memory
(RAM)) or non-volatile memory (e.g. flash memory). In a
particular embodiment, the memories 162-168 are RAM
memories that represent a cache memory for one or more of
the CPUs 102-108. Accordingly, in this embodiment each of
the memories 162-168 stores a subset of data stored at a larger
RAM memory (not shown).

In addition, each of the memories 162-168 can operate in
multiple power modes. In a normal or active mode, the
memory is configured to respond to memory access (e.g. read
or write) requests normally. In a low-power mode, the
memory is configured to enter a self-refresh state, whereby
the memory retains information stored at the memory, but
cannot respond to memory access requests. In other low-
power modes, the memory can be configured to respond to
memory access requests, but at a reduced speed relative to the
active mode. In the low-power modes, a lower voltage can be
supplied to the memory so that it consumes less power. In an
embodiment, a power management module (not shown) can
set the power modes of each of the memories 162-168 indi-
vidually. For example, the power management module can set
the power of the memory 164 to a low-power state while
setting the power mode of the memory 168 to a normal state.

The BIOS memory 150 is non-volatile memory, such as
read-only memory (ROM) or flash memory configured to
store configuration information, such as BIOS information.
In response to a POR event, the BIOS memory is configured
to receive a request for the configuration information, and
provide the information in response to the request. The con-
figuration information can include hardware configuration
information, software configuration information, and the
like.

In the illustrated embodiment of FIG. 1, the configuration
information includes thread scheduling tables 152 and 154
and power profile indicator 156. Each of the thread schedul-
ing tables 152 and 154 indicate a specified order of thread
scheduling for the cores of the CPUs 102-108. The thread
scheduling table 152 is configured to list the cores in an
interleaved format. As used herein, an interleaved format
refers to a format whereby all of the cores associated with a
particular CPU are not listed together, but instead are sepa-
rated by the listing of cores associated with other CPUs. An
example of a thread scheduling table having an interleaved
format is illustrated in FIG. 2 as thread scheduling table 252.

US 9,110,716 B2

5

In the illustrated example, thread scheduling table lists core
110 (associated with CPU 102) first, followed by core 120
(associated with CPU 104), which is in turn followed by core
130 (associated with CPU 106), which is followed by core
140 (associated with CPU 108). Following core 140, core 112
(associated with CPU 102 is listed), followed by cores 122,
132, and 142.

Referring again to FIG. 1, the thread scheduling table 154
is configured to set forth the cores in a sequential format. As
used herein, a sequential format refers to a format whereby
each core of a particular CPU is listed together, so that all the
cores of the CPU are listed before or after the cores of another
CPU. An example of thread scheduling table having a sequen-
tial format is illustrated in FIG. 2 as thread scheduling table
254. In the illustrated embodiment, cores 110 and 112, asso-
ciated with CPU 102, are listed together, followed by cores
120 and 122, associated with CPU 104. Cores 120 and 122 are
followed by cores 130 and 132, associated with CPU 106,
which are in turn followed by cores 140 and 142, associated
with CPU 108.

In a particular embodiment, the thread scheduling tables
152 and 154 comply with the Advance Configuration and
Power Interface (ACPI) specification, and are configured as
complete or portions of tables accessible by the operating
system 111. In addition, each of the thread scheduling tables
152 and 154 can be configured to identify each core according
to an advanced programmable interrupt controller (APIC)
identification number. For example, in one embodiment the
thread scheduling tables 152 and 154 are each a local APIC
table. Accordingly, in one embodiment the tables 152 and 154
are APIC tables that an operating system can access to iden-
tify how many cores are available for execution of threads,
and how the assignment of threads the available cores should
be sequenced.

The power profile indicator 156 is configuration informa-
tion identifying a power profile of the information handling
system 100. In an embodiment, the power profile indicator
156 is programmable by a user of the system via a BIOS
configuration program (not shown) or other configuration
tool. The configuration tool can provide a set of power profile
options for selection by the user, and the power profile indi-
cator 156 is set based on the selected option. For example, the
power profile indicator 156 can indicate whether the infor-
mation handling system 100 should operate in a performance
mode, where the speed at which tasks are performed is
increased, or should operate in a power savings mode, where
the information handling system 100 consumes less power
but performs tasks at a reduced rate of speed relative to the
performance mode.

As described further herein, the information handling sys-
tem 100 is configured to assign threads for execution at the
CPU cores in a sequence that is based upon the power profile
for the system. Thus, if the power profile indicator 156 indi-
cates the information handling system 100 is in a perfor-
mance mode, the system assigns threads for execution in a
distributed fashion to increase the number of CPUs that are
executing threads. If the power profile indicator 156 indicates
the information handling system 100 is in a power savings
mode, the system assigns threads for execution in such a way
as to concentrate threads at fewer CPUs. This increases the
likelihood that one or more of the CPUs 102-108 will not be
assigned a thread, allowing those CPUs not executing threads
to be placed in a low-power state to conserve power.

In addition, as explained further herein, threads are
assigned for execution at the CPU cores based on a thread
scheduling table. In particular, the thread scheduling table
identifies a sequence of CPU cores, and an operating system

10

15

20

25

30

35

40

45

50

55

60

65

6

the information handling system 100 assigns threads to the
cores based on the sequence. Accordingly, the information
handling system 100 can control the power profile for the
system by providing the appropriate thread scheduling table,
with the appropriate sequence of CPU cores, to the operating
system.

In operation, the operating system 111 is configured to
schedule execution of program threads for one or more appli-
cations (not shown) executing at the information handling
system 100. To illustrate, after a POR event the operating
system 111 requests a thread scheduling table from the BIOS
memory 150 in order to determine how threads should be
scheduled for execution at the CPUs 102-108. In response the
CPU 102 accesses the power profile indicator 156 to deter-
mine a power profile for the information handling system
100. Based on the indicated power profile, the CPU 102
retrieves one of the thread scheduling tables 152 and 154 and
provides the retrieved table to the operating system 111. In
response, the operating system 111 schedules execution pro-
gram threads according to the retrieved table.

The operation of the information handling system 100 can
be better understood with reference to an example. In this
example, the operating system 111 requests thread schedul-
ing information. Inresponse, the CPU 102 determines that the
power profile indicator 156 indicates that the information
handling system 100 is in a performance mode and therefore
retrieves thread scheduling table 152. As explained, thread
scheduling table 152 sets forth the cores of the CPUs 102-108
in interleaved format. Accordingly the CPU 102 provides
thread scheduling information based on the table to the oper-
ating system 111, which then schedules execution of program
threads according to the table.

FIG. 3 illustrates a particular embodiment of thread sched-
uling based on the interleaved format of thread scheduling
table 152. In the illustrated embodiment of FIG. 3, the oper-
ating system 111 schedules execution of four threads, desig-
nated threads 315, 317, 319, and 321. To schedule execution
of'the four threads, the operating system 111 accesses sched-
uling information according to the thread scheduling table
152. According to the table, the first thread, designated as
thread 315, is scheduled for execution at core 110 of CPU
102. The operating system schedules second thread, desig-
nated as thread 317, for execution at the core 120 of CPU 104,
and schedules execution of the third thread, designated as
thread 319, at the core 130 of CPU 106. Further, based on the
thread scheduling table 152, the operating system 111 sched-
ules the fourth thread, designated as thread 321, for execution
at core 140 of core 108.

Thus, in the illustrated example of FIG. 3, scheduling
threads based on the thread scheduling table 152 results in
threads being distributed among the CPUs 102-108, so that a
thread is not scheduled for execution of a thread at a second
coreuntil all CPUs have at least one core scheduled to execute
athread. This reduces the average number of cores executing
at each CPU over time. Further, when one or more cores of a
CPU is not executing a thread, the CPU is able to devote more
resources to the cores that are executing threads, thereby
improving the performance of the executing cores. Thus, by
reducing the average number of cores that execute threads
over time at a CPU, the performances of the CPU is improved,
thereby improving the overall performance of the information
handling system 100. Accordingly, scheduling of threads
according to the thread scheduling table 152 can improve
system performance, corresponding to the performance mode
indicated by the power profile indicator 156.

Referring again to FIG. 1, ifthe power profile indicator 156
the information handling system 100 is in a “power savings”

US 9,110,716 B2

7

mode, the operating system 111 will be provided with the
thread scheduling table 154. FIG. 4 illustrates a particular
embodiment of thread scheduling based on the sequential
format of thread scheduling table 154. In the illustrated
embodiment of FIG. 4, the operating system 111 schedules
execution of the four threads 315, 317, 319, and 321. To
schedule execution of the four threads, the operating system
111 accesses scheduling information according to the thread
scheduling table 152. According to the table, the first thread
315is scheduled for execution at core 110 of CPU 102 and the
second thread 317, for execution at the core 112 of CPU 102.
The operating system 111 further schedules execution of the
third thread 319, at the core 120 of CPU 104 and schedules the
fourth thread 321, for execution at core 122 of core 104. Thus,
in the illustrated embodiment of FIG. 4, threads are not sched-
uled for CPUs 106 and 108. Accordingly, the power manage-
ment module can place CPUs 106 and 108 in a low-power
mode, thereby conserving power.

Thus, as illustrated in FIG. 4, scheduling execution of
threads according to the thread execution table 154 can result
in fewer CPUs having cores scheduled to execute threads.
This allows the information handling system 100 to more
frequently place the unused CPUs in a low-power state, and
can also allow the information handling system 100 to more
frequently place the unused CPU into a deeper low-power
state (i.e. a low-power state that consumes less power than
other low-power states), thereby reducing power consump-
tion of the system.

Referring again to FIG. 1, the information handling system
100 can also set the memory access configuration based on
the power profile indicator 156. For example, if the power
profile indicator 156 indicates the information handling sys-
tem 100 is in the “power savings” mode, the system 100 can
set the memory access mode to a NUMA mode. This allows
the memories associated with CPUs that are not scheduled to
execute threads to be placed in a self-refresh or other low
power state, conserving power. If the power profile indicator
indicates the information handling system 100 is in the per-
formance state, the system 100 can set the memory access
mode to an interleaved memory mode, so that each of the
memories 162-168 are accessible to each of the CPUs 106-
108, thereby improving performance.

Referring to FIG. 5, a flow diagram of a method of sched-
uling threads for execution at an information handling system
is illustrated. At block 502, a request for thread scheduling
information is received from an operating system. At block
504, the information handling system determines a mode of
operation for the system. If the mode of operation indicates a
power savings mode, the method flow moves to block 506,
and thread scheduling information setting forth cores of the
system in sequential format is communicated to the operating
system. If; at block 504, it is determined that the mode of
operation is not a power savings mode, the method flow
moves to block 508, and thread scheduling information set-
ting forth the system cores in interleaved format is commu-
nicated to the operating system. At block 510, the operating
system schedules execution of a plurality of program threads
according to the communicated thread scheduling informa-
tion.

Note that not all of the activities described above in the
general description or the examples are required, that a por-
tion of a specific activity may not be required, and that one or
more further activities may be performed in addition to those
described. Still further, the order in which activities are listed
are not necessarily the order in which they are performed.

The specification and illustrations of the embodiments
described herein are intended to provide a general under-

10

15

20

25

30

35

40

45

50

55

60

65

8

standing of the structure of the various embodiments. The
specification and illustrations are not intended to serve as an
exhaustive and comprehensive description of all of the ele-
ments and features of apparatus and systems that use the
structures or methods described herein. Many other embodi-
ments may be apparent to those of skill in the art upon review-
ing the disclosure. Other embodiments may be used and
derived from the disclosure, such that a structural substitu-
tion, logical substitution, or another change may be made
without departing from the scope of the disclosure. Accord-
ingly, the disclosure is to be regarded as illustrative rather
than restrictive.

Certain features are, for clarity, described herein in the
context of separate embodiments, may also be provided in
combination in a single embodiment. Conversely, various
features that are, for brevity, described in the context of a
single embodiment, may also be provided separately or in any
subcombination. Further, reference to values stated in ranges
includes each and every value within that range.

Benefits, other advantages, and solutions to problems have
been described above with regard to specific embodiments.
However, the benefits, advantages, solutions to problems, and
any feature(s) that may cause any benefit, advantage, or solu-
tion to occur or become more pronounced are not to be con-
strued as a critical, required, or essential feature of any or all
the claims.

The above-disclosed subject matter is to be considered
illustrative, and not restrictive, and the appended claims are
intended to cover any and all such modifications, enhance-
ments, and other embodiments that fall within the scope of the
present invention. Thus, to the maximum extent allowed by
law, the scope of the present invention is to be determined by
the broadest permissible interpretation of the following
claims and their equivalents, and shall not be restricted or
limited by the foregoing detailed description.

What is claimed is:

1. A method, comprising:

detecting a power-on reset event in an information han-
dling system;

requesting, by a first central processing unit (CPU), con-
figuration information including thread scheduling
information in response to the power-on reset event in
the information handling system;

communicating first thread scheduling information in
response to the request, the first thread scheduling infor-
mation identifying processor cores in a sequential for-
mat, wherein each of a first plurality of processor cores
of'the first CPU assigned a program thread prior to one of
a second plurality of processor cores of a second CPU
being assigned a program thread;

communicating second thread scheduling information in
response to the request, the second thread scheduling
information identifying that one of the first plurality of
processor cores of the first CPU is assigned a program
thread and one of the second plurality of processor cores
of the second CPU is assigned a program thread prior to
a second one of the first plurality of processor cores of
the first CPU being assigned a program thread;

placing the second CPU in a low-power mode in response
to each of the second plurality of processor cores of the
second CPU not having any threads scheduled for
execution;

communicating third thread scheduling information to
reduce a number of the first processor cores executing
threads in the first CPU, and to improve a performance of

US 9,110,716 B2

9

the first CPU by the first CPU providing more resources
to the first processor cores in the first CPU that are
executing threads; and

retaining, during the low-power mode, state information in

each of the first plurality of processor cores in order to
resume operations when the first central processing unit
is returned to a normal mode.

2. The method of claim 1, wherein communicating the first
thread scheduling information comprises communicating the
first thread scheduling information in response to determin-
ing a mode of operation of the information handling system is
a first mode associated with a power savings mode of the
information handling system.

3. The method of claim 2, further comprising setting a
memory access mode of the information handling device to a
non-uniform memory access (NUMA) mode in response to
determining the mode of operation is the first mode.

4. The method of claim 2, further comprising scheduling
execution of a first thread based on the first thread scheduling
information.

5. The method of claim 2, wherein the mode of operation is
programmable.

6. The method of claim 2, further comprising determining
the mode of operation based on Basic Input/Output System
(BIOS) information.

7. The method of claim 1, wherein the first thread sched-
uling information comprises an Advanced Configuration and
Power Interface (ACPI) table.

8. The method of claim 7, wherein the ACPI table is a local
Advanced Programmable Interrupt Controller (APIC) table.

9. A method comprising:

determining a mode of operation of an information han-

dling system;

in response to determining the mode of operation is a first

mode corresponding to a non-power savings mode of the
information handling system:

communicating first thread scheduling information indi-

cating that all CPUs have at least one core scheduled to
execute a program thread before a second processor core
of a first CPU is scheduled for execution of a program
thread, wherein the first thread scheduling information
reduces a number of cores executing threads in the first
CPU, and improves a performance of the first CPU by
the first CPU providing more resources to the cores in
the first CPU that are executing threads;

in response to determining that the mode of operation is a

second mode corresponding to a power savings mode of
the information handling system, communicating sec-
ond thread scheduling information indicating that all
processor cores of the first CPU are scheduled to execute
a program thread before a processor core of a second
CPU is scheduled for execution of'a program thread; and

5

15

20

25

30

35

40

45

50

10

placing the second CPU in a low-power mode in response
to each of the second plurality of processor cores of the
second CPU not having any threads scheduled for
execution.

10. The method of claim 9, further comprising: in response
to determining the mode of operation is the first mode, setting
a memory access mode of the information handling device to
a non-uniform memory access (NUMA) mode.

11. An information handling system comprising:

a first central processing unit (CPU) comprising a first

plurality of processor cores;

a second CPU comprising a second plurality of processor
cores;

a first memory configured to store first thread scheduling
information indicating that one of the first plurality of
processor cores of the first CPU is assigned a program
thread and one of the second plurality of processor cores
of the second CPU is assigned a program thread prior to
a second one of the first plurality of processor cores of
the first CPU being assigned a program thread, wherein
the first thread scheduling information reduces a number
of cores executing threads in the first CPU, and improves
a performance of the first CPU by the first CPU provid-
ing more resources to the cores in the first CPU that are
executing threads, and configured to store second thread
scheduling information identifying that all of the pro-
cessor cores of the first CPU are assigned program
threads prior to one of the second plurality of processor
cores of the second CPU are assigned a program thread,
wherein the second CPU is placed in a low-power mode
in response to each of the second plurality of processor
cores of the second CPU not having any threads sched-
uled for execution.

12. The information handling system of claim 11, wherein
the first memory is configured to store configuration informa-
tion selectively identifying the first thread scheduling infor-
mation and the second thread scheduling information based
on a profile indicator associated with the information han-
dling system.

13. The information handling system of claim 12, further
comprising a second memory, a memory access mode of the
second memory based on the configuration information.

14. The information handling system of claim 12, wherein
the configuration information is programmable information.

15. The information handling system of claim 11, wherein
the first thread scheduling information comprises an
Advanced Configuration and Power Interface (ACPI) table.

16. The information handling system of claim 15, wherein
the ACPI table is a local Advanced Programmable Interrupt
Controller (APIC) table.

#* #* #* #* #*

